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Resumen
La aplicación de la inteligencia artificial se ha expandido en los últimos años en el ámbito de la neurología. Tal como ocurre en 
otras enfermedades neurológicas, en epilepsia es necesaria la interconexión entre aspectos clínicos, neurofisiológicos y de neuro­
imagen para tomar decisiones diagnósticas y terapéuticas. Esto conlleva que, para la toma de decisiones de cada paciente, se 
deba valorar una gran cantidad de información, con la consiguiente demanda de recursos, formación y tiempo por parte del 
médico. La gran cantidad de información que se genera en la evaluación de un paciente con epilepsia es el escenario perfecto 
para el desarrollo y aplicación de la inteligencia artificial, alimentando con una infinidad de datos a los sistemas de redes neuro­
nales, además de posibilitar la validación de la metodología en bases de datos multicéntricas. En esta revisión se analizan los 
modelos de inteligencia artificial con mayores tasas de precisión para la predicción o detección de crisis, algunos de los cuales 
ya se encuentran en fase de implantación. Asimismo, el auge exponencial de dispositivos portátiles o wearables permite entrever 
un futuro con mayor autonomía del paciente y un manejo más objetivo y humanizado.

Palabras clave: Inteligencia artificial. Epilepsia. Electroencefalograma. Wearables. Crisis epilépticas.

Abstract
Artificial intelligence is present on our everyday life, and its applications can already be seen on healthcare. According to its 
ethiopathogenic characteristics, the diagnosis and control of epilepsy requires of the connexion between clinical features, 
neurophysiology and neuroimage. Thus, for each patient, a substantial quantity of information must be considered for the clinician’s 
decision-making process, with the subsequent demand of resources and time. This enormous influx of information is the perfect 
scene for the development and application of artificial intelligence, feeding neuronal networks with plenty of data in addition to 
enabling the streamlining of its validation processes on multicentric databases. In this review, we focus on artificial intelligence 
models with the highest precision rates of prediction or detection of seizures, some of which are now being implemented on clinical 
practice. Nevertheless, the exponential increase of wearable devices elucidates a future with improved patient’s autonomy and a 
more precise and humanistic medical approach.
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INTRODUCCIÓN

La epilepsia es una enfermedad que se caracteriza 
por una predisposición crónica a la aparición de crisis 
epilépticas, la cual se acompaña de consecuencias neu-
robiológicas, cognitivas, psicológicas y sociales1.

Según los datos publicados por la Organización Mun-
dial de la Salud (OMS), aproximadamente 50 millones de 
personas padecen epilepsia a nivel mundial, con una 
prevalencia a lo largo de la vida de 7,6 por cada 1.000 per-
sonas2,3, estimándose que el 70% de las personas con 
epilepsia podrían vivir sin crisis si se diagnosticaran y 
trataran adecuadamente.

La epilepsia aumenta el riesgo de mortalidad prema-
tura4 y condiciona de manera significativa la calidad de 
vida de las personas que la padecen, situándose como la 
segunda enfermedad neurológica en años de vida poten-
cialmente perdidos o vividos con discapacidad. Los ele-
mentos que suponen una mayor limitación en la calidad 
de vida son el género, con mayor efecto en las mujeres, 
la alta frecuencia de crisis, la necesidad de politerapia, la 
comorbilidad psiquiátrica y la situación de desempleo 
secundaria5.

El estudio y tratamiento de la epilepsia supone un 
reto cada vez mayor. La aparición de nuevas moléculas 
para su tratamiento, la mejora de las técnicas diagnósti-
cas y terapéuticas, así como el descubrimiento exponen-
cial de variantes genéticas relacionadas con el desarrollo 
de la enfermedad, han aumentado significativamente la 
complejidad para la toma de decisiones individual de 

cada paciente. Las variables posibles que se deben con-
siderar de cara a optimizar el tratamiento, entorpecidas 
por las limitaciones burocráticas del propio sistema, pro-
pician que el profesional clínico deba apoyarse en siste-
mas externos de análisis de datos clínicos y previsión de 
resultados.

Ante esta necesidad, la posibilidad de utilizar técni-
cas de análisis de datos mediante inteligencia artificial 
(IA) ha supuesto una revolución en la medicina moderna. 
Las técnicas de IA con mayor repercusión (Fig. 1) se 
centran en machine learning (ML) o aprendizaje automá-
tico, y dentro de este, en deep learning o aprendizaje 
profundo, que se fundamenta en redes neuronales ca-
paces de realizar procesos de abstracción y análisis com-
plejos6,7. El desarrollo tecnológico actual, con la comer-
cialización de dispositivos de análisis portátil (wearables), 
permite a estas tecnologías aprovechar el procesamiento 
de señales para dinamizar el estudio de la epilepsia con 
una mayor autonomía del paciente. En esta revisión se 
exponen ejemplos de tecnologías basadas en IA que 
suponen ya el presente y el futuro de la atención al pa-
ciente epiléptico.

RESPUESTA A TRATAMIENTO

La base del tratamiento en todo paciente epiléptico 
es el uso de fármacos antiepilépticos (FAE) o medicamen-
tos anticrisis3. En la práctica clínica diaria se deben valo-
rar las comorbilidades, el subtipo de epilepsia, los datos 
clínicos, así como los rasgos únicos y las vivencias del 

Figura 1. Áreas de desarrollo de la inteligencia artificial (adaptada de Wang et al., 20218). 
SVM: support vector machines (máquinas de vector de soporte); PNL: procesamiento del lenguaje natural.
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paciente con el objetivo de confeccionar para él una 
pauta idónea. De la adecuación del tratamiento depende-
rá en gran medida la respuesta del control de crisis, así 
como el impacto en la calidad de vida del paciente, por 
lo que es uno de los elementos donde las tecnologías de 
IA se han focalizado.

Existen estudios destinados a calcular las tasas de 
respuesta esperadas a determinados FAE en función 
de  las características clínicas y la respuesta electroen-
cefalográfica al tratamiento. Por ejemplo, se analizó una 
cohorte de 23 pacientes en tratamiento con levetirace-
tam, uno de los fármacos más utilizados, con un resul-
tado de predicción de la respuesta clínica del 75-80% 
según su área bajo la curva (area under the curve, 
AUC)8. Estos modelos de ML suponen los primeros pa-
sos para optimizar la farmacorrespuesta, mejorando su 
efectividad al desarrollar árboles de decisión más com-
plejos que incluyan un gran número de variables que 
permitan realizar una priorización entre los distintos fár-
macos, siendo necesario extender su estudio al resto de 
las moléculas.

La aplicación de la teoría de grafos en sistemas de 
redes neuronales constituye un campo con alta aplicabi-
lidad a nivel clínico9. La implementación de estas tecno-
logías de IA en el análisis de estudios de resonancia 
magnética funcional (RMf) ha permitido cuantificar la 
efectividad de distintos FAE, además de objetivar un efec-
to positivo en redes y estructuras cerebrales concretas10. 
En este estudio10 usaron un modelo de ML denominado 
máquinas de vectores de soporte o de soporte vectorial 
(support vector machines, SVM), logrando una tasa de 
clasificación (diferenciar pacientes en los que el trata-
miento es efectivo de los que no) del 84,22% (sensibilidad 
del 78,76%, especificidad del 89,65% y AUC de 0,96). 
La limitación del estudio radica en su tamaño muestral, 
35 pacientes y controles, y en su aplicación, exclusiva a 
pacientes pediátricos con epilepsia de ausencias. Pese 
a ello, la generalización de su uso supondría una enorme 
utilidad a nivel clínico y con importantes aplicaciones a 
nivel traslacional, ahondando en el conocimiento de la 
fisiopatología de la epilepsia. 

Algunos modelos de predicción de ML han desarro-
llado sistemas de estimación de respuesta a FAE me-
diante la introducción de datos clínicos y estudios gené-
ticos de los pacientes11. En un estudio se estableció una 
predicción de respuesta a brivaracetam con una AUC 
de 0,76 cuando se aplicó el modelo conjunto (datos 
clínicos más genéticos)11. Las simulaciones que analiza-
ron cada categoría de información por separado, clínica 
o genética, no mostraron diferencias en los resultados 
del modelo clínico frente al genético, y ninguno de am-
bos fue superior a la estimación conjunta, confirmando 
que el modelo que aúna ambas fuentes logra unas pre-
dicciones significativamente más sólidas. Las variables 
de más peso en la predicción fueron la respuesta previa 
a levetiracetam y la localización del foco epileptógeno. 
En estos sistemas de predicción, sin embargo, el sesgo 

en la información clínica y el desconocimiento de mu-
chas de las variables genéticas patogénicas limitan su 
efectividad. 

Estos hallazgos refuerzan el paradigma establecido 
en los modelos de IA mediante el cual la diversificación 
de las fuentes de información, asegurando una recogida 
adecuada de esta, logran establecer modelos predictivos 
más objetivos y de mayor aplicabilidad clínica.

ELECTROENCEFALOGRAFÍA

Los estudios de electroencefalografía (EEG) comen-
zaron a utilizarse en humanos desde 1920 gracias al 
trabajo pionero del neurólogo y psiquiatra Hans Berger. 
Desde entonces, nuestro conocimiento en la electrofisio-
logía del cerebro se ha ampliado enormemente, particu-
larmente en el estudio de la epilepsia, llegando a suponer 
una herramienta indispensable para el diagnóstico y ma-
nejo de la enfermedad. Con el aumento de la demanda 
de estudios prolongados, de monitorización urgente y el 
incremento de casos de difícil valoración, los clínicos 
formados en interpretación del EEG han experimentado 
una responsabilidad y una sobrecarga asistencial crecien-
tes, por lo que han surgido herramientas complementa-
rias cuyo objetivo es facilitar estas tareas.

En los últimos años han aparecido distintos modelos 
de IA orientados al análisis EEG con el objeto de acortar 
los tiempos necesarios para su interpretación por parte 
de los profesionales entrenados, e incluso automatizar 
completamente el proceso. Tres de estos modelos de IA 
son Encevis, SpikeNet y Persyst, siendo la tendencia de 
aparición de nuevos softwares cada vez más acusada. 

Se ha realizado un estudio comparativo entre mode-
los de análisis de registros breves de EEG estandarizado 
(unos 20 minutos por registro) aplicando sistemas de 
análisis automatizado, análisis híbrido (selección de even-
tos por parte de la IA con posterior lectura por el espe-
cialista) y el modelo tradicional de lectura del registro en 
su totalidad12. De los tres, el sistema automatizado, pese 
a su elevada sensibilidad, presentaba unas tasas de es-
pecificidad demasiado bajas para su implementación se-
gún los estándares actuales, que buscan evitar el sobre-
diagnóstico13-15. El modelo híbrido presentaba tasas de 
sensibilidad similares con una mejoría significativa de la 
especificidad, logrando una precisión global de: Encevis 
93,33%, SpikeNet 76,67% y Persyst 86,67%, similar a la 
del modelo tradicional (83,33%) (Tabla 1). Es importante 
destacar que el tiempo requerido para la interpretación 
de los estudios fue significativamente menor con el siste-
ma híbrido, logrando reducciones de entre el 26 y el 91%.

Las potenciales aplicaciones de estas herramientas de 
interpretación por IA son incuestionables, pero es necesa-
rio demostrar la escalabilidad de estos modelos a registros 
prolongados y a dispositivos EEG de alta densidad o de 
áreas extendidas. La futura irrupción de softwares más 
complejos quizá torne la balanza hacia un sistema con 
mayor nivel de automatización.
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La IA también puede suponer un cambio de para-
digma en el manejo precoz de los pacientes con riesgo de 
epilepsia. La susceptibilidad a padecer crisis depende 
de un sinfín de factores, lo que con frecuencia hace difí-
cil adecuar la mejor actitud terapéutica a cada situación.

En atención intrahospitalaria es vital establecer el 
riesgo de padecer crisis epilépticas, y para ello se ha 
desarrollado una escala de riesgo, 2HELPS2B16, que, me-
diante la introducción de un único dato clínico (haber 
padecido crisis epilépticas) y la confirmación de una serie 
de grafoelementos habituales en la monitorización EEG, 
permite establecer el riesgo de padecer crisis con un AUC 
de 0,819. Sin embargo, existen limitaciones para la apli-
cación de esta escala: no todos los centros pueden rea-
lizar monitorizaciones EEG; todos los pacientes incluidos 
contaban con un registro continuado de al menos 6 ho-
ras, no pudiéndose validar la escala en estudios de menor 
duración.

También se han desarrollado modelos de IA que 
permiten establecer el riesgo de padecer una epilepsia 
generalizada idiopática o genética mediante técnicas 
de machine learning aplicadas a registros de EEG. Con 
el método extreme gradient boosting se ha logrado una 
precisión del 98% en la identificación de epilepsia  
generalizada idiopática o genética frente a controles 
sanos17.

La gran disponibilidad de datos digitalizados de los 
registros de EEG explica que este campo haya experimen-
tado un mayor crecimiento durante los primeros años de 
aplicación de la IA en epilepsia. Ya se dispone de los 
primeros resultados comerciales y es probable que du-
rante los próximos años sigan apareciendo más y mejores 
soluciones que permitan optimizar el diagnóstico y el 
tratamiento de la epilepsia.

MUERTE SÚBITA INESPERADA 
EN LA EPILEPSIA

La muerte súbita inesperada en la epilepsia (sudden 
unexpected death in epilepsy, SUDEP) es la principal 
causa de mortalidad asociada a la epilepsia, así como 
la segunda causa neurológica de pérdida de años de 
vida18-20. Habitualmente, la SUDEP se presenta durante 
la noche y sin observadores21, siendo su riesgo mayor 
en las crisis generalizadas o bilaterales tónico-clónicas 
(CGTC)22.

Con el objetivo de prevenir los episodios de SUDEP 
se han desarrollado modelos de IA que han incluido fac-
tores potencialmente predictores derivados de registros 
EEG intercríticos23 y del electrocardiograma, como la va-
riabilidad de la frecuencia cardiaca24, comparándolos con 
controles. De los modelos planteados, el que obtuvo me-
jores resultados ha sido el modelo de regresión logística, 
con una AUC de 0,77 para la predicción de pacientes 
con riesgo de SUDEP. Las limitaciones principales de este 
estudio fueron su tamaño muestral reducido, el uso de 
registros EEG y electrocardiográficos breves y no haber 
valorado datos de supresión EEG postictal. Los resultados 
no se validaron en otras poblaciones.

Las nuevas tecnologías están aportando enfoques no 
explorados en los modelos de prevención, como el siste-
ma denominado Nelli25. Se trata de una herramienta de 
detección automatizada de crisis motoras nocturnas que 
emplea grabaciones en directo de audio y vídeo de los 
pacientes y las analiza con IA25. El objetivo principal es 
el diagnóstico de crisis hipermotoras complejas y CGTC 
nocturnas, las que más se relacionan con SUDEP. El 
objetivo secundario es identificar crisis motoras nocturnas 
simples. Nelli se comparó con la interpretación del vídeo-
EEG por un experto. La sensibilidad del sistema Nelli para 

Tabla 1. Comparativa de la sensibilidad, especificidad, precisión y tiempo de análisis, con sus intervalos de confianza al 95%, 
entre los distintos modelos y cada uno de los softwares utilizados

Modelo Sensibilidad Especificidad Precisión Tiempo

Tradicional

93,33% (77,93-99,18) 73,33% (55,11-87,72) 83,33% (71,48-91,70) 160 s/registro (146-172 s)

Automatizado

Encevis 96,67% (82,78-99,92) 16,67% (5,64-34,72) 56,67% (43,24-69,41) Automático

SpikeNet 66,67% (47,19-82,71) 63,33% (43,86-80,07) 65% (51,6-76,87)

Persyst 100% (88,43-100) 3,33% (0,08-17,22) 51,67% (38,39-64,77)

Híbrido

Encevis 93,33% (77,93-99,18) 93,33% (77,93-99,18) 93,33% (77,93-99,18) 118 s/registro (103-134 s)

SpikeNet 56,67% (37,43-74,54) 96,67% (82,78-99,92) 76,67% (63,96-86,62) 14 s/registro (11-16 s)

Persyst 76,67% (57,72-90,07) 96,67% (82,78-99,92) 86,67% (75,41-94,06) 59 s/registro (50-67 s)

Adaptada de Kural et al., 202212.
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Para dar respuesta a las limitaciones de los modelos 
previos, Gill et al. desarrollaron un modelo de CNN que 
evitaba la necesidad de reconstrucción de superficies y 
realizaba su análisis directamente en vóxeles, pudiendo 
implementar el modelo en centros externos con una me-
dia de sensibilidad del 91%33. Otro modelo de CNN ha 
demostrado a nivel multicéntrico una sensibilidad del 
85% para la detección de DCF en pacientes con estudio 
RM negativo y del 93% para todos los pacientes de la 
serie. La principal limitación en su aplicabilidad es su tasa 
de falsos positivos y la necesidad de contar con un sis-
tema adecuado de procesado34.

La RMf está proporcionando datos que apoyan que 
la etiopatogenia de la epilepsia radica en una alteración 
de determinadas redes neuronales35. Con técnicas de ML 
aplicadas a la RMf de reposo se han podido distinguir 
patrones específicos de epilepsia temporal mesial y cla-
sificar entre pacientes sanos y epilépticos con una preci-
sión del 98% y una sensibilidad del 100%, confirmando 
además circuitos concretos que manifiestan una clínica 
específica. Otras aplicaciones de estas técnicas son con-
firmar la lateralidad del foco epiléptico36 y evaluar la late-
ralidad del lenguaje37 antes de una cirugía.

El ML también se ha aplicado a la tomografía por 
emisión de positrones (PET) con fluorodesoxiglucosa en 
el estudio de la lateralización y localización de foco epi-
léptico38,39, sin claras evidencias de una mejor precisión 
que otras alternativas descritas. En los últimos años se 
ha ampliado su uso a la predicción de crisis posquirúr-
gicas40,41. 

Asimismo, el uso conjunto de PET y RM tiene un 
efecto sinérgico a la hora de localizar DFC, logrando en 
los modelos ensayados una precisión del 93 frente al 82% 
de solo RM, con la limitación de un tamaño muestral 
bajo42.

Por el momento, estos estudios tienen tamaños mues-
trales pequeños y carecen de una adecuada validación 
externa, pero se intuye la irrupción del PET como técnica 
de diagnóstico y manejo en epilepsia. La inmensa disponi-
bilidad de datos de neuroimagen permitirá el desarrollo 
exponencial de modelos de IA en el futuro cercano.

WEARABLES

El uso de wearables (dispositivos portátiles, llevables, 
ponibles o vestibles) está en auge en la sociedad43. Este 
interés pronto alcanzó al ámbito sanitario, especialmente 
al campo de la epilepsia. El principal interés de su empleo 
en epilepsia radica en que los diarios de crisis son una 
fuente de información poco fiable a la hora de tomar 
decisiones clínicas44, por lo que obtener un método de 
cuantificación objetiva de las crisis y de respuesta a tra-
tamientos se ha hecho indispensable.

Respondiendo a esta necesidad se han desarrollado 
numerosos dispositivos de registro (Fig. 2) y publicado 
trabajos que los respaldan45, la mayor parte con sistemas 
de validación poco robustos46. Para estandarizar este 

la detección de crisis mayores fue del 93,7% (el 100% 
de las CGTC y el 80% de las crisis hipermotoras comple-
jas). En las crisis motoras simples, la sensibilidad dismi-
nuía hasta un 8,3%. Pese a lo positivo de estos resulta-
dos, cabe destacar que el sistema presentó una tasa de 
falsos positivos de 0,16 por hora, siendo detectadas en el 
63% de los sujetos.

La predicción de SUDEP se puede nutrir en el futu-
ro de otras fuentes de datos con la incorporación de 
parámetros como los derivados de la monitorización res-
piratoria y la actividad electrodérmica, así como de otros 
sistemas tecnológicos que probablemente aumentarán la 
precisión de estos modelos.

NEUROIMAGEN

La neuroimagen, además de ser uno de los pilares 
diagnósticos en epilepsia, está experimentando progresos 
en materia terapéutica al permitir planificar abordajes 
quirúrgicos avanzados. La resonancia magnética estruc-
tural (RM) permite determinar en algunos casos la etiolo-
gía de la epilepsia26, posibilitando su tratamiento quirúr-
gico cuando esté indicado27. 

La esclerosis hipocampal (EH) es la principal varian-
te estructural que se relaciona con la epilepsia de lóbulo 
temporal mesial. Un método de análisis de regresión 
(LASSO) con SVM ha permitido discernir la presencia de 
EH en la RM con un AUC de 0,85, precisión mayor que 
la de observadores entrenados, lo que permite evitar re-
trasos diagnósticos28. 

En pacientes con semiología sugestiva de epilepsia 
del lóbulo temporal mesial y estudios de RM negativos 
para EH se aplicó un modelo de IA que aunaba ambas 
fuentes de información (clínica y radiológica), logrando 
una reclasificación de estos pacientes con una precisión 
del 88%27. Aunque la correcta detección de EH es vital 
en epilepsia, estos modelos se ven limitados por su apli-
cación específica a dicha entidad, obviando alteraciones 
en el resto del parénquima.

Otra entidad de indiscutible relevancia en epilepsia 
es la displasia cortical focal (DCF), que constituye la 
causa más común de epilepsia refractaria en la infancia 
y la segunda en adultos29. Se entrenó una red neuronal 
convolucional (convolutional neural network, CNN) para 
distinguir diferencias en la simetría y la densidad visuali-
zada en la interfase entre sustancia blanca y gris, logran-
do una precisión diagnóstica del 88% para DCF30. Otro 
sistema, basándose en métodos de SBM (surface-based 
morphometry)31 y una red neural no lineal, analizó una 
serie de parámetros extraídos de una reconstrucción 3D 
cortical, logrando identificar DCF con un AUC de 0,7532. 
La principal limitación de estos modelos es la variabilidad 
de la calidad de los estudios en función de las RM dis-
ponibles en cada centro, así como la necesidad de un 
software adecuado supervisado por un experto con el que 
realizar el posprocesado de datos.
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proceso se ha propuesto un sistema basado en la eva-
luación de los elementos indispensables para la correcta 
detección de crisis (sujetos, registros, análisis de datos, 
alarmas y estándar de referencia)47. Existen cinco fases 
de validación (0-4), englobando la fase 3 los estudios con 
evidencia robusta y la fase 4 aquellos que han sido eva-
luados en práctica clínica real.

Aunque las crisis se pueden detectar mediante EEG 
de superficie con una sensibilidad entre el 75 y el 90%, 
su extrapolación a dispositivos portátiles de baja con-
centración de electrodos no se ha generalizado debido 
a la marcada disminución de la precisión de estos dis-
positivos48.

En la actualidad, los wearables que han demostrado 
un rendimiento significativo son aquellos que no se basan 
en la utilización del registro EEG46, sino en algoritmos 
centrados en EMG (electromiograma) de superficie49 y 
acelerómetros50, aunque exclusivamente en CGTC.

Se ha desarrollado un brazalete que dispone de un 
acelerómetro que permite detectar CGTC con una sensi-
bilidad del 90%, una tasa de falsa alarma de 0,2 por día 
y una latencia media de 55 segundos50. Otro dispositivo 
de EMG de superficie a nivel de bíceps ha demostrado 
una sensibilidad del 94% en la detección de CGTC, con 
una tasa de falsa alarma de 0,7 por día y una latencia 
media de detección de 9 segundos51.

La irrupción de estos dispositivos en el ámbito de la 
epilepsia supondrá un cambio en el manejo de los pa-
cientes, permitiendo su mayor autonomía y una toma de 
decisiones más objetiva por parte del clínico. El futuro de 
los wearables en epilepsia pasa por la inclusión de tec-
nologías de ML en los dispositivos de registro alternativos 
al EEG, así como por el desarrollo de sistemas de EEG de 
baja densidad de electrodos más precisos.

CONCLUSIONES

La IA es una herramienta que, asociada a las técni-
cas tradicionales, se está introduciendo en la práctica 
clínica de la epilepsia a todos los niveles: prevención, 
diagnóstico, tratamiento, seguimiento e investigación. La 
formación y el empoderamiento tecnológico por parte del 
neurólogo y otros profesionales de la salud son claves 
para aprovechar todo este potencial.

Los principales objetivos de la IA y los dispositivos 
que en ella se basan son el beneficio directo para el 
paciente, la liberación de la sobrecarga a la que están 
sometidos los profesionales y, finalmente, poder disponer 
de tiempo para dedicarlo a quien nos pide ayuda, revita-
lizando así la relación paciente-médico, su cercanía y 
otros valores clásicos de la medicina.
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